CPFEM simulations of grain size effect in FCC polycrystals: a new approach based on surface GND density

A multiscale modeling methodology involving discrete dislocation dynamics (DDD) and crystal plasticity finite element method (CPFEM) is used to study the physical origin and to simulate the grain size effect in FCC polycrystalline plasticity. This model is based on the dislocation density storage–recovery framework, expanded on the scale of slip systems. DDD simulations are used to establish a constitutive law incorporating the main dislocation mechanisms controlling strain hardening in monotonically deformed FCC polycrystals. This is achieved by calculating key quantities controlling the accumulation of the forest dislocation density within the grains and the polarized dislocation density at the grain boundaries during plastic deformation. The model is then integrated into the CPFEM at the polycrystalline aggregate scale to compute short- and long-range internal stresses within the grains. These simulations quantitatively reproduce the deformation curves of FCC polycrystals as a function of grain size. Because of its predictive ability to reproduce the Hall-Petch law, the proposed framework has a great potential for further applications.

Speaker: Maoyuan Jiang

Date and Location: Monday 09/03/20 14h00, LEM meeting room (E2.01.20), Châtillon.

Orientation imaging at the onset of plastic deformation

Diffraction Contrast Tomography (DCT) is a near-field X-ray diffraction technique for the inspection of ductile materials at the micron scale. It has traditionally been used for the study of undeformed polycrystalline materials with grain sizes of a few tenths of microns. It uses a box-sized monochromatic X-ray beam, which allows it to scan large regions of millimeter sized sample (with up to thousands of grains) in a relatively short time.
Recent work has introduced sub-grain orientation reconstruction (6D-DCT), which has made DCT a viable tool for the reconstruction of slightly deformed materials.
Topo-tomography (TT) is also a near-field X-ray diffraction technique, which, on the other hand, allows to focus on a single grain with a high-resolution detector and to obtain sub-micron level shape information.
In this talk, we will first present how the data is acquired and reconstructed in modern DCT and TT acquisitions. Then, we will present their 6D and 5D extensions (respectively) for the reconstruction of sub-grain level orientation information. Finally, we will discuss future applications, including the combined use of DCT and TT data in a single 6D reconstruction for the investigation of slip bands formation at the onset of deformation.

Speaker: Dr Nicola Viganò

Date and Location: Friday 21/02/20, 14h00 LEM meeting room (E2.01.20), Châtillon.

Coupling Bragg Coherent Diffraction Imaging (BCDI) and Molecular Dynamics to investigate nanostructure

Fig. 1 (top) Experimental reconstruction of the u111 displacement field on a 250 nm Pt NP (bottom)  u111 displacement field obtained by energy minimization of a simulated Pt NP (right) εxx, εyy and  εzz components of the strain tensor derived from the simulation

Physical properties at small length scale deviate strongly from the bulk counterpart, typically below the micrometer. For instance, mechanical strength increases with reducing size, large residual strain due to processing are present in nanostructures. Thus a better understanding of the physical properties in relationship with the microstructure is needed for nanoscale materials. Because of its good spatial resolution (~ 10 nm) and excellent sensitivity to atomic displacements and local strain [1,2], Bragg coherent diffraction imaging (BCDI) has emerged in the past two decades as a powerful tool to probe the structure and local displacement field inside nanoscale objects [3]. When combined with in situ mechanical loading, BCDI is particularly relevant for the study of defect nucleations in isolated nanoparticles [4] or to investigate intragranular deformation mechanisms in polycrystalline thin films [5].

Nowadays, the length scales that are accessible by BCDI and that can be simulated by Molecular Dynamics (MD) simulation are almost converging. The coupling between the two methods is therefore particularly relevant and allows to get a detailed picture of the deformation mechanisms in nanostructures at the atomic scale. This coupled approach has been used to study the surface relaxation of metallic nanoparticles (Au, Pt). An excellent quantitative agreement is obtained between the component of the displacement field measured experimentally and calculated by energy minimization (Molecular Statics) (Fig. 1). With this approach, the measurement of only one Bragg reflection is required to derive the 3D displacement field and the six independent components of the strain tensor from the simulation [6]. The two techniques can also be combined to  identify defect structures nucleated during in situ  mechanical loading [4,5] and to interpret the evolution of the strain field in nanoparticle catalysts during gas reaction [7,8]..

[1] Watari, M. et al. Nature Materials 10, 862–866 (2011).

[2] Labat, S. et al. ACS Nano 9, 9210–9216 (2015).

[3] Robinson, I. & Harder, R. Nat Mater 8, 291–298 (2009).

[4] Dupraz, M. et al. Nano Lett. 17(11) (2017).

[5] Cherukara, M. et al. Nat. Comm. (2018).

[6] Dupraz et al.  to be submitted (2019)

[7] Kim, D. et al. Nat. Comm. 9, 3422 (2018).

[8] Dupraz, M. et al. in preparation

Speaker: Dr. Maxime Dupraz

Date and Location: Monday 25/11/19, 14h00 LEM meeting room (E2.01.20), Châtillon.