Archive dans 16 mai 2023

Excitons dans le nitrure de bore hexagonal et ses homostructures en rotation : propriétés de volume, aux surfaces et aux interfaces

Résumé

Le nitrure de bore hexagonal (hBN) est un semi-conducteur à large bande interdite qui joue un rôle stratégique dans la famille des matériaux 2D en raison de propriétés telles qu’une luminescence UV intense ou son rôle protecteur pour les autres matériaux 2D. L’assemblage de différents matériaux 2D pour former des hétérostructures de matériaux 2D (h2D) offre des perspectives intéressantes pour l’ingénierie de leurs propriétés optiques et électroniques. Cela nécessite une compréhension des
Page 2/2
propriétés intrinsèques de chaque matériau 2D, mais aussi des influences réciproques des matériaux assemblés les uns sur les autres, ainsi que des effets de surface et d’interface.
Cette thèse est centrée sur les propriétés des excitons à la base de la luminescence du hBN. Il s’agit d’étudier sur des cristaux hBN, leur dynamique spatiale et temporelle en volume, leur diffusivité et l’effet recombinant de la surface pour ensuite aborder en détail les phénomènes d’émission lumineuse aux interfaces entre deux cristaux de hBN désorientés formant une homostructure hBN-hBN en rotation. Ces études ont été réalisées avec le dispositif de cathodoluminescence (CL) résolue en temps du GEMaC, qui permet un contrôle spatial et temporel de l’excitation, bien adapté à l’étude de la dynamique excitonique. Les expériences ont été menées sur des monocristaux de hBN de différentes qualités selon leur technique de synthèse et sur des homostructures hBN-hBN assemblées à partir de fragments exfoliés de cristaux massifs.
L’étude de la dynamique de déclin de l’exciton libre en volume de différents cristaux hBN a d’abord permis de mesurer sa durée de vie radiative, qui est une donnée intrinsèque au matériau, à 27 ns. Cette très faible valeur nous a permis de comprendre l’origine de la forte efficacité de luminescence du hBN, qui est un sujet débattu depuis plus de 10 ans. Il est ainsi établi que l’efficacité de luminescence est due à la compacité spatiale de l’exciton qui rend sa désexcitation radiative particulièrement efficace. Le rôle des défauts cristallins sur la durée de vie de l’exciton est identifié et discuté à partir de l’étude comparative de cristaux de différentes qualités.
Ensuite, nous avons étudié la diffusion des excitons et leurs recombinaisons aux surfaces du hBN grâce à un nouveau protocole expérimental en CL qui utilise les recombinaisons de surface comme sonde de la diffusion de l’exciton. L’application du protocole a permis de mesurer la diffusivité hors du plan (jusqu’à 0.2 cm2.s−1 pour le meilleur échantillon) et la vitesse de recombinaison de surface (≥ 105
cm.s−1). La surface de hBN se révèle être au niveau des plus recombinantes des semiconducteurs connus. Ces résultats ont été exploités pour dimensionner les homostructures hBN-hBN de façon à maximiser le transfert des excitons vers l’interface entre les deux cristaux.
Enfin, un phénomène de luminescence intense et large observé à 300 nm à l’interface des homostructures hBN-hBN désorientées a été étudié en détail. Une série d’expériences menées en excitation continue et en dynamique a permis d’établir que cette bande d’émission est alimentée de façon très efficace par le transfert et le piégeage d’excitons libres à l’interface. Son rendement quantique interne peut atteindre 100% pour des angles de désorientation proche de 30°. L’ensemble des résultats est cohérent avec l’attribution proposée pour cette bande à la recombinaison d’excitons auto-piégés à l’interface. L’étude des déclins de luminescence en fonction de la température a mis en évidence une barrière d’énergie à la formation des excitons auto-piégés de 10 meV et un potentiel de piégeage de l’interface pour les excitons de 100 meV aux angles de 11 et 15°.
Le dernier volet de la thèse traite de la fabrication de centres colorés dans le hBN par implantation ionique et irradiation électronique. L’effet de ces techniques sur la luminescence du hBN est étudié en CL et en photoluminescence afin d’évaluer l’application potentielle des centres créés pour les technologies quantiques.

Candidat:
Sébastien Roux

Jury:
Dr. Gwénolé Jacopin – Institut Néel, Grenoble- Rapporteur
Pr. Christophe Voisin – LPES, Sorbonne Université – Rapporteur
Dr. Claudio Attaccalite – CINaM, Aix-Marseille Univ. – Examinateur
Dr. Stéphane Collin – C2N, Université Paris-Saclay – Examinateur
Pr. Catherine Journet – LMI, Université Claude Bernard Lyon 1  – Examinatrice
Dr. Cédric Robert – LPCNO, Insa Toulouse – Examinateur
Pr. Julien Barjon – GEMaC – Directeur de thèse

Dr. Annick Loiseau – ONERA – Directrice de thèse
Dr. Christophe Arnold – GEMaC – Directeur de thèse

Mercredi 24 mai 2023 à 14h00
Salle Contensou, ONERA, 29 Avenue de la Division Leclerc,92320, Chatillôn

Synthèse par CVD de films de nitrure de bore aux propriétés optimisées pour dispositifs en optoélectronique

Résumé

Dans la famille des matériaux bidimensionnels (2D), le nitrure de bore a été identifié comme un matériau stratégique. Ce semi-conducteur à grand gap (>6eV), atomiquement plan, résistant chimiquement et thermiquement, peut jouer plusieurs rôles dans les hétérostructures de matériaux 2D : substrat de graphène pour préserver la mobilité exceptionnelle de ses porteurs de charge ou couche encapsulante pour protéger d’autres matériaux 2D sensibles à leur environnement ou exalter leurs propriétés. Des démonstrateurs de principe ont été réalisés avec des monocristaux de BN. Les dimensions latérales et l’homogénéité en épaisseur du BN sont limitées par la dimension initiale millimétriques des cristaux et leur mise en oeuvre par exfoliation mécanique. Cette technique est donc difficilement industrialisable. Il est nécessaire de développer des synthèses de films de BN de dimensions, structure et qualité contrôlées pour permettre une montée en échelle. Dans cette thèse en partenariat avec la PME Annealsys, nous avons choisi de développer la synthèse de films de BN sur nickel par dépôt chimique en phase vapeur à basse pression (LPCVD). Dans un premier temps, nous avons transposé sur le bâti de l’équipementier Annealsys le procédé de synthèse de BN sur des substrats de nickel polycristallin à partir de borazine déjà maitrisé par l’équipe. Nous avons confirmé que la morphologie et la qualité du BN dépend de l’orientation cristallographique du nickel sous-jacent et que l’orientation (111) du nickel est la plus favorable pour la synthèse de film continu de BN. Nous avons donc ensuite travaillé avec des substrats monocristallins de Ni(111) /YSZ/Si(111). Nous avons porté une attention particulière à la préparation de ces substrats spécifiques et développé un traitement de stabilisation in-situ dans le bâti de dépôt, compatible avec un procédé industriel. La structure et la qualité des films de BN synthétisés, i.e. épaisseur, rugosité, séquence d’empilement, cristallinité et taille de domaines, ont été caractérisées de l’échelle atomique à l’échelle millimétrique par un panel de techniques de microscopies et spectroscopies (AFM, MEB, Raman, MET. . .). Nous avons mis en place une méthodologie de caractérisation statistique à l’échelle centimétrique, indispensable à la vérification de l’homogénéité des films de BN, prérequis pour la fabrication de dispositifs performants. Nous avons fait varier des paramètres de synthèse clés tels que la quantité de gaz précurseur ou l’épaisseur du substrat de nickel et étudié leur impact sur les films de BN. Les résultats sont discutés d’un point de vue mécanisme de croissance.

Candidate:
Laure Tailpied

Jury:
Pr. Luc Imhoff – Université de Bourogne- Rapporteur
Dr. Laëticia MARTY – Université Grenoble Alpes – Rapporteur
Dr. Berangère Toury – Université Lyon 1 – Examinatrice
Pr. Franck Vidal – Sorbonne Université – Examinateur
Dr. Jean-Manuel Decams – Annealsys – Invité
Dr. Amandine Andrieux-Ledier – ONERA – Encadrante
Dr. Annick Loiseau – ONERA – Directrice de thèse

Mercredi 25 avril 2023 à 14h00
Salle Contensou, ONERA, 29 Avenue de la Division Leclerc,92320, Chatillôn

Cristallographie des bicouches homophases désorientées par rotation-translation

Denis Gratias et Marianne Quiquandon
CNRS-UMR 8247 IRCP, Chimie-ParisTech PSL, Paris

On se propose de discuter la symétrie résultant de la superposition de deux couches monoatomiques cristallines identiques désorientées l’une par rapport à l’autre d’une rotation-translation (α|τ).
Un réseau de coïncidence apparaît —défini par le groupe intersection des groupes de translation des réseaux des monocouches— pour un ensemble dense dénombrable de valeurs de la rotation α, qu’on discutera en toute généralité pour les quatre types de réseaux bidimensionnels, oblique, rectangle, carré et hexagonal. Ces valeurs singulières d’angle α associées aux normes σ des vecteurs unitaires du réseau de coïncidence se répartissent dans le plan (α, σ) selon des branches indexées par des suites de Farey et dont on discutera les propriétés.
Pour une rotation donnée, les symétries spatiales de ces bicouches se répartissent en un
petit nombre seulement de groupes selon la valeur de la translation τ. Ainsi les bicouches de
graphène à réseau de coïncidence ne peuvent présenter que 6 types de groupes d’espace quelles que soient la rotation a de coïncidence et la translation τ.
Dans le cas générique d’absence de réseau de coïncidence, la bicouche présente une
symétrie quasipériodique de rang 4 au plus qu’on peut décrire par une méthode de coupe à partir d’un espace de dimension 4. On montrera l’importance fondamentale du réseau-0 (0-lattice) pour décrire les symétries des figures de moiré de ces édifices.

Conception de matériaux par voie numérique

Maxime Moreaud

IFPEN, Solaize

Depuis 2017, IFPEN est entrée pleinement dans la course à la conception accélérée de nouveaux matériaux avec des modèles créant des liens entre synthèse et propriétés effectives. Ses équipes IA et matériaux proposent de nouveaux outils de génération et de caractérisation numériques de microstructures de matériaux.  
Cette approche considère de façon réaliste la microstructure pour capter des détails morphologiques et topologiques aux échelles d’intérêts. Des modèles numériques font le lien avec des paramètres de synthèse ou de mise en forme, et estiment les propriétés texturales et d’usages. Lors de cet exposé, nous aborderons les idées générales de cette approche, des exemples de microstructures multi-échelles, et quelques récents travaux concernant les caractérisations numériques texturales comme la tortuosité et la simulation de physisorption accélérée par apprentissage profond.

Rydberg atoms: a versatile tool for quantum technologies

Sylvain Schwartz

Laboratoire QTECH (ONERA)

Rydberg atoms are by definition atoms which have been excited to a state with a large principal quantum number, resulting in exaggerated properties such as a large atomic size, a long lifetime compared to other excited states and large matrix elements for the dipole operator. In practice, dipole-dipole interactions between Rydberg atoms are at the heart of quantum simulations, where they are used to create entangled atomic states. But the large dipole of Rydberg atoms can also result in a strong coupling with external electromagnetic fields, making these atoms good candidates to be used as very sensitive probes of electromagnetic environment in the GHz to THz range. I this talk, I will give a brief overview of the state of the art of quantum simulation and quantum metrology with Rydberg atoms, and present the ongoing project that we have in the QTech lab at ONERA about quantum metrology with cold Rydberg atoms trapped in optical potentials. Possible applications include electromagnetic intelligence, THz imaging and scientific applications such as the calibration of black-body shifts in state-of-the-art optical clocks (in collaboration with SYRTE and laboratoire Aimé Cotton).

2018, web site created by HA & RG.