Catégorie dans Séminaire

Diffusion accélérée par l’irradiation et la déformation plastique: analyse microstructurale et élémentaire

L’exploitation prolongée des centrales nucléaires françaises implique la compréhension des mécanismes de vieillissement sous irradiation des réacteurs nucléaires à eau pressurisée (REP). Le séminaire abordera, en ce sens, deux éléments d’étude.

Le premier volet de la présentation s’applique aux cuves des REP qui subissent une fragilisation importante sous irradiation neutronique. Cette fragilisation est due à la formation et l’agglomération de défauts ponctuels (lacunes et interstitiels), constituant un obstacle au mouvement des dislocations. La contribution des amas de soluté au durcissement est également non négligeable [1,2]. Cette étude vise à identifier l’effet du Ni et du Mn sur la formation et l’évolution des défauts microstructuraux, en mettant en évidence les mécanismes de ségrégation de ces solutés sur les amas/puits de défauts ponctuels pouvant conduire à la précipitation de phases secondaires. Pour ce faire, deux alliages modèles sous-saturés Fe-3%at.Ni et Fe-3%at.Mn ont été caractérisés après irradiation aux ions et aux électrons, en couplant la Microscopie Electronique en Transmission (MET, conventionnelle et haute résolution) et la Sonde Atomique Tomographique (SAT). Les résultats obtenus (Fig. 1.a-c) montrent que l’irradiation à 400°C induit, dans le Fe3at.%Ni, la formation d’une phase γm non prédite par le diagramme de phases d’équilibre (Fig. 1.d). Ainsi, un modèle faisant le lien entre la chimie des phases, les déformations propres de la phase (eigenstrain) et la concentration d’excès des défauts ponctuels a été développé pour calculer les diagrammes de phases sous irradiation (Fig. 1.e).

Figure 1 : (a) Image MET-HR d’un précipité γ formé sous irradiation dans la matrice α-Fe3at.%Ni ; (b) cliché de diffraction associé ; (c) agrandissement des encarts bleu et rouge indiqués dans les variants 1 et 2 respectivement du précipité présenté en (a) ; (d) et (e) sont les diagrammes de phases d’équilibre et sous irradiation (calculés) respectivement.

 

Le second volet de ce séminaire porte sur le mécanisme de propagation de fissures de corrosion sous contrainte (CSC) dans les composants du circuit primaire des REP (alliages base Ni). A la température de fonctionnement (350°C), l’amplitude de la zone déchromée découlant de l’oxydation sélective de l’élément Cr aux joints de grains n’est pas expliquée [3]. En effet, le coefficient de diffusion du Cr dans ces alliages, extrapolé à partir des hautes températures, est trop faible [4]. Cette étude se propose ainsi d’évaluer l’hypothèse d’un effet accélérateur de la plasticité sur la diffusion. Pour cela, des expériences de diffusion sont réalisées à basses températures (jusqu’à 500°C) dans le Ni pur à l’état non déformé et déformé. Les coefficients de diffusion du Cr en volume et aux joints de grains sont déterminés à l’aide de deux techniques : la Spectrométrie de Masse des Ions Secondaires (SIMS) et la technique des radiotraceurs (Université de Münster, Allemagne).

[1] M.K. Miller, M.G. Burke, An atom probe field ion microscopy study of neutron irradiated pressure vessel steels, J. Nucl. Mater. 195 (1992) 68-82.

[2] M. Lambrecht et al., On the correlation between irradiation induced microstructural features and the hardening of reactor pressure vessel steels, J. Nucl. Mater. 406 (2010) 84-89.

[3] M. Sennour et al., Advanced TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment, J. Nucl. Mater. 393 (2009) 254.

[4] D. D Pruthi et al., Diffusion of Chromium in Inconel-600, J. Nucl. Mater. 64 (1977) 206-210.

Conférencière : Dr. Lisa Belkacemi-Rebrab  (Centre des Matériaux, MINES ParisTech) 

Date et Lieu : Vendredi 16 Octobre à 14h00 Salle de conférence du LEM (E2.01.20), Châtillon.

 

Étude de l’effet de la taille des grains dans les polycristaux CFC : une nouvelle modélisation basée sur la densité de dislocations polarisées surfaciques

Une modélisation multi-échelle impliquant des simulations de dynamique des dislocations discrètes (DDD) et un code de plasticité cristalline (CPFEM) est utilisée pour étudier l’origine physique de l’effet de la taille des grains dans les polycristaux CFC. Ce modèle en densité de dislocation s’inscrit dans le cadre de l’approche stockage-restauration de Kock-Mecking, élargi à l’échelle des systèmes de glissement. Des simulations de DDD sont utilisées pour identifier une loi constitutive incorporant les principaux mécanismes élémentaires des dislocations contrôlant l’écrouissage plastique des polycristaux CFC en condition monotone. Nous avons calculé les paramètres clés contrôlant l’accumulation de la densité de la forêt dans les grains et la densité de dislocation polarisée aux joints de grains pendant la déformation plastique. Ce modèle est ensuite intégré dans un code CPFEM à l’échelle de l’agrégat polycristallin pour calculer les contraintes internes à courte et longue distances à l’intérieur des grains. On montre que ces simulations reproduisent quantitativement les courbes de déformation des polycristaux CFC en fonction de la taille des grains. La capacité prédictive de ce nouveau modèle à reproduire l’effet de Hall-Petch suggère que celui-ci à un fort potentiel pour d’autres applications.

Conférencière: Dr. Maoyuan Jiang

Date et Lieu: Lundi 9 Février 2020, Salle de conférence du LEM (E2.01.20), Châtillon.

Imagerie de l’orientation cristalline au début de la déformation plastique

La tomographie par contraste de diffraction des rayons X (anglais: Diffraction Contrast Tomography, DCT) est une technique pour l’imagerie des matériaux ductiles, avec une résolution de quelque micromètre. Traditionnellement, la DCT est utilisé pour l’étude des matériaux ré-cristallisés, contenants grains de quelque dizaine de microns. Les acquisitions de la DCT sont faites en utilisant des faisceaux monochromatiques bidimensionnels, pour pouvoir illuminer rapidement des régions assez larges des échantillons.
Récemment, un nouveau algorithme six-dimensionnel (6D-DCT) a été développé pour reconstruire matériaux avec une déformation plastique faible (dans l’ordre de quelque dégrée).
La topo-tomographie (TT) est aussi une technique pour l’imagerie des grain avec le contraste de diffraction X, mais qui permet de se focaliser sur un grain seulement, et d’obtenir des images à plus haute résolution que la DCT (sous-micron).
Pendant ce séminaire on présentera les arguments suivants: l’acquisition et la reconstruction des données DCT et TT, les extensions des algorithmes de reconstructions à 6D et 5D pour la reconstruction de l’orientation au niveau de sous-grain, et les applications futures comme la combinaison de la DCT et de la TT pour investiguer la formation des « slip bands » au début de la déformation.

 

Conférencier: Dr. Nicola Viganò

Date et Lieu: Vendredi 21 Février à 14h00, Salle de conférence du LEM (E2.01.20), Châtillon.

Etude des mécanismes de déformation en fluage à 1050°C/120MPa des superalliages à bases nickel : Cas du MC2 et MCNG

Afin d’accroître le rendement des turbomachines on augmente la température des gaz à l’entrée de la turbine (TET). Cela rend les conditions de fonctionnement des turboréacteurs de plus en plus sévères et nécessite le développement de nouveaux alliages aussi réfractaires que possible (T> 1000°C). Dans ce domaine les superalliages base nickel n’ont pas de concurrents sérieux. Leur développement s’est effectué depuis plusieurs décennies dans un contexte industriel. Ces alliages biphasés composés d’une phase γ’ dispersée dans une matrice désordonnée proposent aux métallurgistes une mine de questionnements fondamentaux :

Leur résistance mécanique élevée est-elle liée à la chimie de ces alliages? à la structure ordonnée de la phase γ’ ? au désaccord paramétrique entre les deux phases ou aux réseaux de dislocations aux interfaces?

Cette étude comparative entre le comportement en fluage à 1050°C, de deux superalliages monocristallins pour aubes de turbine, le MC2 alliage de 1ère génération (sans rhénium) et le MCNG alliage de 3ème génération (avec rhénium), constitue une tentative à hiérarchiser ces différents facteurs de durcissement.

L’approche à diverses échelles (macro, méso, micro) montre en quoi la création et l’évolution des radeaux diffèrent dans ces deux alliages. L’addition d’éléments lourds (Rhénium) peut modifier les caractéristiques intrinsèques de chacune des phases (paramètre de maille, énergie de défaut d’empilement, énergie de paroi d’antiphase, état d’ordre…) ou leur morphologie (structure standard ou en radeaux).

L’analyse détaillée des mécanismes de formation et d’évolution des réseaux qui gainent les radeaux  γ ’ à haute température (Figure 1a), fait apparaître le rôle essentiel des interfaces γ-γ’ perpendiculaires à l’axe de traction. Dans ces deux alliages elles ne sont pas planaires mais sont ondulées autour du plan (001) (Figure 1b). Cette ondulation moins symétrique dans MCNG aboutit à la formation de réseaux de dislocations lâches et mal organisés qui se déstabilisent de façon précoce conduisant à destruction prématurée des radeaux. Par contre dans MC2, l’ondulation est symétrique et les réseaux de dislocations sont denses, réguliers et stables conduisant à un stade secondaire plus long.

 

a
b

Figure 1 : Superalliage à base Nickel : (a) Structure standard  (b) La structure en  radeaux 

Conférencier: Dr. Moustafa Benyoucef

Date et Lieu: Mardi 10 Décembre à 10h30 Salle de conférence du LEM (E2.01.20), Châtillon.

Couplage de l’imagerie par diffraction cohérente de Bragg (BCDI) et de la dynamique moléculaire pour étudier les nanostructures

Fig. 1 (top) Experimental reconstruction of the u111 displacement field on a 250 nm Pt NP (bottom)  u111 displacement field obtained by energy minimization of a simulated Pt NP (right) εxx, εyy and  εzz components of the strain tensor derived from the simulation

Les propriétés physiques à petite échelle de longueur diffèrent fortement de celles du matériau massif, typiquement en deçà du micromètre. Par exemple, la résistance mécanique augmente quand la taille diminue et de fortes contraintes résiduelles liés aux procédés d’élaboration sont présentes au sein de nanostructures. Il existe ainsi un besoin d’une meilleure compréhension de la relation entre la microstructure et les propriétés des matériaux aux échelles nanométriques. Du fait de sa bonne résolution spatiale et de son excellent sensibilité aux déplacements atomiques et à la déformation locale [1,2], l’imagerie par diffraction cohérente en géométrie de Bragg (BCDI) s’est imposée au cours des deux dernières décénnies comme un outil très puissant pour mesurer le champ de déplacement local dans des objets nanométriques [3]. Combinée à une sollicitation mécanique in situ, la BCDI est particulièrement adaptée à l’étude de la germination de défauts dans des nanoparticules isolées [4] ou encore à la détermination des mécanismes de déformations intragranulaires dans des films minces polycristallins [5].

De nos jours, la quasi convergence des échelles de longeur mesurables expérimentalement par diffraction cohérente et simulables par dynamique moléculaire, le couplage entre les deux méthodes est particulièrement pertinent, et permet une étude complète et détaillée des mécanismes de déformation à l’échelle atomique. Cette approche couplée a été utilisée pour étudier la relaxation de surface de nanoparticules métalliques (Au, Pt). Un excellent accord est obtenue entre la composante du champ de déplacement mesurée expérimentalement et calculée par minimisation d’énergie (statique moléculaire) (Fig. 1.) Grâce à cette approche, la mesure expérimentale de seulement une seule réflection de Bragg est requise pour pouvoir dériver le champ de déplacement 3D et les six composantes indépendentes du tenseur de déformation [6]. Les deux techniques peuvent également être combinées pour identifier des structures de défauts germées pendant une sollicitation mécanique in situ [4,5] ou encore pour interpréter l’évolution du champ de déformation d’une nanoparticule catalytique pendant une réaction sous gas [7,8]

[1] Watari, M. et al. Nature Materials 10, 862–866 (2011).

[2] Labat, S. et al. ACS Nano 9, 9210–9216 (2015).

[3] Robinson, I. & Harder, R. Nat Mater 8, 291–298 (2009).

[4] Dupraz, M. et al. Nano Lett. 17(11) (2017).

[5] Cherukara, M. et al. Nat. Comm. 9 (2018).

[6] Dupraz et al.  to be submitted (2019)

[7] Kim, D. et al. Nat. Comm. 9, 3422 (2018).

[8] Dupraz, M. et al. in preparation

Conférencier: Dr. Maxime Dupraz

Date et Lieu: Lundi 25 Novembre à 14h00 Salle de conférence du LEM (E2.01.20), Châtillon.