Due to the strong correlation between chemical order and physical properties, nanoalloys with a tendency to order are particularly interesting in the field of catalysis, magnetism, or optics. By reducing the size of the system, i.e. from a solid alloy to a nanoalloy, many questions arise: Is the chemical order preserved? What is the morphology of nanoparticles? What is the composition and chemical order on the surface? What is the evolution of properties with size? This presentation is devoted to the study of two systems, both similar and different in their behavior: Co-Pt, a system emblematic of the chemical order, and Pt-Ag, a hybrid system presenting both a chemical order and a tendency to demix, as well as a strong tendency to segregation. In order to answer these various questions, we adopt a semi-empirical approach through an N-body potential, allowing atomic relaxations, in the approximation of the second moment of state density (SMA), coupled with Monte Carlo simulations in different ensembles. The SMA potential is adjusted, in order to reproduce the volume and surface properties, on calculations derived from the theory of density functional theory (DFT) or on experimental data. In a first step, the volume phase diagram of the two systems is determined by the model and compared to the experiment. Then the low index surfaces (111), (100) and (110) are studied in order to verify the segregation inversion observed for the Co-Pt system, where Pt segregates weakly on the dense surfaces (111) and (100) but where we observe a pure Co plane on the surface (110). On the contrary, the Pt-Ag system shows strong Ag segregation on surfaces (111) and (100). In a second step, aggregates of truncated octahedral morphology of different sizes (ranging from 1000 to 10000 atoms) will be analyzed in terms of chemical composition on the different unequal sites (top, edge, facets (100) and (111) and core) and then compared to the reference systems (surfaces, volume) over the whole concentration range. For the Co-Pt system, we observe ordered structures similar to those of the volume for the core and similar to those of the surfaces for the facets. The impact of the two-dimensional phase (√3 × √3)R30◦ specific to the surface, is all the more important on the chemical order at the core as the nanoparticle is small. For the Pt-Ag system, we observe an important segregation of Ag at the surface, as well as a Pt enrichment at the subsurface, and the stabilization of the L11 ordered phase at the core. This structure can appear in a single variant or by adopting all possible variants, leading to an onion peel structure.