Catégorie dans Actualité

Conception de matériaux par voie numérique

Maxime Moreaud

IFPEN, Solaize

Depuis 2017, IFPEN est entrée pleinement dans la course à la conception accélérée de nouveaux matériaux avec des modèles créant des liens entre synthèse et propriétés effectives. Ses équipes IA et matériaux proposent de nouveaux outils de génération et de caractérisation numériques de microstructures de matériaux.  
Cette approche considère de façon réaliste la microstructure pour capter des détails morphologiques et topologiques aux échelles d’intérêts. Des modèles numériques font le lien avec des paramètres de synthèse ou de mise en forme, et estiment les propriétés texturales et d’usages. Lors de cet exposé, nous aborderons les idées générales de cette approche, des exemples de microstructures multi-échelles, et quelques récents travaux concernant les caractérisations numériques texturales comme la tortuosité et la simulation de physisorption accélérée par apprentissage profond.

Rydberg atoms: a versatile tool for quantum technologies

Sylvain Schwartz

Laboratoire QTECH (ONERA)

Rydberg atoms are by definition atoms which have been excited to a state with a large principal quantum number, resulting in exaggerated properties such as a large atomic size, a long lifetime compared to other excited states and large matrix elements for the dipole operator. In practice, dipole-dipole interactions between Rydberg atoms are at the heart of quantum simulations, where they are used to create entangled atomic states. But the large dipole of Rydberg atoms can also result in a strong coupling with external electromagnetic fields, making these atoms good candidates to be used as very sensitive probes of electromagnetic environment in the GHz to THz range. I this talk, I will give a brief overview of the state of the art of quantum simulation and quantum metrology with Rydberg atoms, and present the ongoing project that we have in the QTech lab at ONERA about quantum metrology with cold Rydberg atoms trapped in optical potentials. Possible applications include electromagnetic intelligence, THz imaging and scientific applications such as the calibration of black-body shifts in state-of-the-art optical clocks (in collaboration with SYRTE and laboratoire Aimé Cotton).

Etude atomique de la plasticité des métaux de transition cubiques centrés

Baptiste Bienvenu, Chu Chun Fu et Emmanuel Clouet

Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette

A basse température, la plasticité des métaux de transition cubiques centrés (CC) s’opère par le glissement dans les plans compacts {110} des dislocations vis de vecteur de Burgers ½<111>, subissant une forte friction avec le réseau cristallin. L’objectif de ce travail est de construire des lois d’écoulement plastique à partir de l’étude à l’échelle atomique des propriétés de coeur et de la mobilité de ces dislocations vis (par calculs ab initio et de dynamique moléculaire), permettant de les relier à des propriétés mécaniques macroscopiques (limite élastique, activité des systèmes de glissement).
Dans le cadre de cette étude, une attention particulière est portée au cas du chrome (Cr), le seul de ces métaux ayant une structure proche de l’antiferromagnétisme, une onde de densité de spins, en-dessous de la température ambiante. Afin de qualifier l’influence du magnétisme sur la plasticité du Cr, des calculs ab initio à température nulle ont été couplés à des simulations Monte Carlo à température finie. Cette étude a permis de conclure à une influence marginale du magnétisme, mis à part à très basse température où le vecteur de Burgers ½<111> des dislocations génère des fautes magnétiques puisque celui-ci ne respecte pas l’ordre magnétique du Cr.
Par la suite, une étude systématique portant sur l’ensemble des sept métaux de transition CC (vanadium, niobium, tantale, chrome, molybdène, tungstène et fer) a permis de développer un critère d’écoulement reproduisant les caractéristiques expérimentales des effets dits « non-Schmid », une spécificité de ces métaux à basse température. Cependant, certains effets ne peuvent pas être décrits par ce critère, tenant uniquement compte du mouvement de dislocations isolées. C’est le cas par exemple du glissement anomal, observé dans tous les métaux CC excepté le fer, et caractérisé par le glissement de dislocations ½<111> dans des plans {110} faiblement sollicités. A partir d’observations in situ dans un microscope électronique en transmission réalisées par Daniel Caillard (CEMES-CNRS, Toulouse), couplées à des simulations atomiques, un nouveau mécanisme expliquant ce phénomène dans l’ensemble des métaux CC a été mis en évidence, basé sur la mobilité exceptionnelle de multi-jonctions. Enfin, la mobilité de dislocations ayant un vecteur de Burgers <100>, le plus souvent observées sous forme de jonctions entre dislocations ½<111> mais rarement considérées comme des systèmes de glissement possibles, a été étudiée par simulations atomiques. Il a été mis en évidence que, malgré une mobilité compétitive des dislocations vis <100> avec les conventionnelles ½<111> dans les plans {110}, les dislocations <100> se bloquent à basse température selon une orientation mixte nécessitant une contrainte très élevée pour se déplacer, expliquant ainsi leur faible activité.

Ladislas Kubin nous a quittés

C’est avec une très grande tristesse que nous avons appris le décès de notre collègue Ladislas Kubin, survenu le 18 octobre 2022.

Diplômé de l’École Centrale Paris en 1966, Ladislas Kubin mène ses travaux de thèse au Laboratoire de Physique des Solides de l’Université d’Orsay. Recruté au CNRS en 1968, il y mène toute sa carrière de chercheur, d’abord au Laboratoire d’Optique Électronique à Toulouse, puis au Laboratoire de Métallurgie Physique à Poitiers et enfin au Laboratoire d’Étude des Microstructures, unité mixte de recherche ONERA-CNRS qu’il intègre dès sa création en 1988 et où il poursuivra sa carrière jusqu’à son éméritat en 2008.

Physicien hors pair, Ladislas Kubin a profondément marqué le domaine de la physique de la plasticité par des recherches expérimentales et théoriques traitant du comportement individuel et collectif des dislocations afin de mieux comprendre les mécanismes de déformation des métaux et alliages cristallins. Sur le plan expérimental, il s’est attaché à développer, dans la première partie de sa carrière, des moyens d’étude in situ du comportement individuel des dislocations en microscopie électronique en transmission. Ces travaux l’ont conduit ensuite à développer des modèles précurseurs pour la prédiction des phénomènes de vieillissement dynamique dans les alliages tel que l’effet Portevin-Le Chatelier, puis au tournant des années 90 à initier une approche originale de simulation mésoscopique des mécanismes de la déformation plastique des métaux. Il a ainsi été l’un des fondateurs de l’école française de la dynamique des dislocations et l’un des premiers à établir le lien entre leur comportement et la réponse plastique des matériaux métalliques.

Spécialiste internationalement reconnu, Ladislas Kubin a été éditeur pour la revue Acta Materialia et l’auteur du livre « Dislocations, mesoscale simulations and plastic flow ». Il a reçu les médailles de bronze et d’argent du CNRS et le prix Gay-Lussac Humboldt.

Ladislas a formé de nombreux doctorants, post-doctorants et interagi avec beaucoup de chercheurs en France et à l’étranger. Ses connaissances dans les domaines de la modélisation et des expériences étaient vastes et recherchées.

Un grand physicien et un collègue apprécié s’en est allé. Son souvenir et son enseignement demeurent.
Ses obsèques se dérouleront mardi 25 octobre 2022 à 14h30 à l’église Saint Charles à Biarritz.
Nos pensées vont à sa famille et à ses proches à qui nous présentons nos sincères condoléances.

Le LEM

Modèles pilotés par les données de simulations atomiques dans des espaces d’états discrets et continus

Thomas Swinburne

CINaM, Marseille

Construire des modèles pour la plasticité, la thermodynamique et la cinétique des métaux est un défi car les aspects subtils de la cohésion atomique doivent être fidèlement reproduits et les prédictions nécessitent souvent une moyenne sur de grands ensembles de configuration complexes. Je discuterai de la manière dont les paysages énergétiques des systèmes atomiques peuvent être rapidement explorés à grande échelle et « coarse-grained » lorsque la dynamique est thermiquement activée, donc séparée en échelle [1,2] et comment les techniques basées sur les données, généralement utilisées pour régresser les énergies pour les modèles cohésifs modernes, peuvent être utilisés pour capturer une gamme beaucoup plus large de propriétés telles que l’entropie des défauts[3] ou les propriétés de dislocation. Lorsque la dynamique n’a pas une séparation d’échelle de temps claire, le grain grossier est beaucoup plus difficile. Je discuterai de la manière dont une approche basée sur les données peut fournir une solution, produisant des modèles de substitution efficaces qui peuvent prédire l’évolution des ensembles de nanoparticules et le rendement de microstructures complexes, offrant de nouvelles perspectives pour les approches de modélisation multi-échelles[4].

 

[1]  TD Swinburne and D Perez, NPJ Comp. Mat 2020, MSMSE 2022
[2]  TD Swinburne and DJ Wales JCTC 2020, 2022
[3]  C Lapointe et al. PRMat 2020
[4]  TD Swinburne, In Prep.

Propriétés optiques du phosphore noir : du cristal massif aux couches atomiques

Résumé

Le phosphore noir est un semi-conducteur à petit gap (environ 0.3 eV) ayant récemment rejoint la famille des matériaux bidimensionnels. Sa bande interdite modulable du moyen infrarouge au visible selon l’épaisseur, sa forte anisotropie dans le plan atomique ainsi que la grande mobilité des porteurs de charges lui promettent un haut potentiel applicatif dans le domaine de l’optoélectronique. L’objectif de cette thèse a été d’étudier les propriétés optiques du cristal de phosphore noir ainsi que de ses feuillets atomiques.

Après une description des différents développements instrumentaux réalisés au cours de cette thèse, les méthodes de fabrication des échantillons sont abordées. Deux points sont à maîtriser : l’élaboration de couches fines et leur protection des conditions ambiantes pour éviter leur oxydation. Dans une première partie, plusieurs méthodes dites « Top-Down » (exfoliation mécanique et assistée à l’or, gravure ionique) sont comparées sur la base de la qualité, la taille, l’épaisseur des échantillons obtenus ainsi que de la facilité d’exécution du mode opératoire. La seconde partie présente deux méthodes de protection des couches fines: la passivation à l’alumine (par ALD ou évaporation d’aluminium) et l’encapsulation dans des feuillets de hBN (hétérostructure hBN/BP/hBN).

La forte anisotropie du phosphore noir fait que la détermination de l’orientation des axes cristallographiques est un point clé dans l’étude du matériau. Dans ce but, un mode opératoire a été proposé qui utilise la spectroscopie Raman polarisée. Celui-ci a été confronté puis validé par différents moyens expérimentaux (observations TEM, EBSD) et théoriques (modélisation de l’intensité Raman dans des couches fines). Les propriétés vibrationnelles ont également été étudiées en fonction du nombre de couches atomiques. Plusieurs effets ont été remarqués à haute (> 100 cm-1) et basse (< 100 cm-1) fréquences et sont

attribués à la réduction de dimensionnalité et à des phénomènes de résonnance. Grâce aux conditions expérimentales d’excitation utilisées, un grand nombre de modes relatifs aux vibrations inter-plans sont mis en évidence pour la première fois et se sont révélés être des indicateurs précis de l’épaisseur des cristallites.

La photoluminescence du cristal massif a été étudiée pour la première fois à température ambiante et cryogénique. Plusieurs composantes d’émission en bord de bande de nature excitonique ont été identifiées dont une raie fine due à l’exciton libre. L’analyse de leur comportement en fonction de la température ainsi qu’un calcul de l’énergie de liaison de l’exciton libre prenant en compte l’anisotropie du milieu ont permis d’établir une nouvelle valeur de référence du gap du phosphore noir à 0.287 eV à 2 K. L’étude en photoluminescence des cristaux exfoliés a révélé la disparition de la raie fine de luminescence au profit d’une bande large. Ce changement est attribué à la densité de défauts introduits par l’exfoliation mécanique ainsi qu’en atteste l’élargissement des bandes en spectroscopie Raman. La bande de photoluminescence a été suivie en fonction de l’épaisseur des couches exfoliées jusqu’à 8 couches atomiques. En dessous d’une épaisseur seuil évaluée à 25 nm, un décalage de la bande vers les hautes énergies est mis en évidence, dont le comportement est très bien décrit par un modèle de confinement quantique. Aucune différence significative n’est observée entre les échantillons passivés alumine et encapsulés dans du hBN ce qui indique que les effets de diélectriques ne sont pas prépondérants dans la gamme d’épaisseur étudiée.

Mots clés: Phosphore noir, Matériaux 2D, Photoluminescence infrarouge, Spectroscopie Raman

Candidat:
Etienne Carré

Jury:
Christophe TESTELIN – Directeur de recherche, CNRS, Sorbonne Université – Rapporteur
Laëticia MARTY – Chargée de recherche, CNRS,Université Grenoble Alpes – Rapporteur
Bruno MASENELLI – Professeur des universités, INSA Lyon – Examinateur
Aurélie PIERRET – Ingénieure de recherche, CNRS, École Normale Supérieure Paris – Examinatrice
Pierre SENEOR – Professeur des universités, CNRS, Université Paris Saclay – Examinateur
Annick LOISEAU – Directrice de recherche, ONERA, Sorbonne Université – Directrice de thèse
Julien BARJON – Professeur des universités, UVSQ – Directeur de thèse
Ingrid STENGER – Maîtresse de conférences, UVSQ – Encadrante

 

Jeudi 23 Juin 2022 à 14h30
Salle Contensou, ONERA, 29 Avenue de la Division Leclerc,92320, Chatillôn

Modélisation de la propagation d’une fissure courte en matériau ductile par couplage entre champ de phase et dynamique des dislocations

Résumé

Dans ce travail, nous proposons un nouveau couplage entre deux méthodes à l’échelle mésoscopique permettant d’étudier l’interaction d’une fissure mobile avec une microstructure de dislocations en trois dimensions. En premier lieu, la propagation d’une fissure est modélisée par un modèle de champ de phase. Dans cette approche, la fissure est décrite par un champ d’endommagement continu dont la propagation est pilotée par la minimisation de l’énergie libre du système, intégrant l’énergie élastique stockée dans le matériau et l’énergie de surface associée aux lèvres de la fissure. En second lieu, la microstructure de dislocations est décrite par un modèle de Dynamique des Dislocations (DD). Ce type de modèle permet en effet de simuler la déformation plastique par le mouvement des dislocations sous chargement externe.

Pour réaliser le couplage, nous avons utilisé l’approche dite MDC (Modèle Discret-Continu) où les dislocations sont représentées par des champs (eigenstrain ou tenseur de Nye) dans un solveur élastique. Pour des raisons d’efficacité, nous avons utilisé des solveurs à base de transformées de Fourier rapides (FFT). L’utilisation de schémas de discrétisation particuliers nous ont permis de minimiser l’étalement des cœurs de dislocation, adopté généralement dans les approches MDC. Nous avons étudié les différents schémas en identifiant leurs performances en terme de qualité des champs prédits. Par ailleurs, nous avons porté une attention parti- culière à l’optimisation de l’implémentation en recourant à la parallélisation de nos algorithmes.

Grâce à ce nouveau couplage, nous avons pu étudier l’écrantage élastique sur la propa- gation de fissure suivant la nature des systèmes de glissement et la densité de dislocations présentes, mais également des phénomènes et d’ingrédients rarement pris en compte comme le glissement dévié des dislocations proches du front de fissure ou encore le nombre de sources environnantes. Cette méthode mésoscopique constitue une avancée pour l’analyse fine des mécanismes physiques contrôlant les premiers stades de la rupture des matériaux métalliques.

Mots clés : Fissure, Plasticité, Modélisation multi-physique, Dynamique des Dislocations, Champ de phase

Candidat:
Luis Eon

Jury:
Stéphane Berbenni – Directeur de Recherche CNRS, LEM3, Metz – Rapporteur
Samuel Forest –  Directeur de Recherche CNRS, CDM, Evry  – Rapporteur
Véronique Doquet – Directrice de Recherche CNRS, LMS, Palaiseau  – Examinatrice
Lionel Gélébart – Ingénieur-chercheur HdR,  CEA/DEN, Gif-sur-Yvette – Examinateur
Rénald Brenner – Directeur de Recherche CNRS, D’Alembert, Paris – Examinateur
Yoann Guilhem – Maître de conférences, LMPS, Gif-sur-Yvette – Examinateur
Riccardo Gatti – Chargé de Recherche CNRS, LEM, Châtillon – Encadrant de thèse
Benoît Appolaire – Professeur des Universités, IJL, Nancy – Directeur de thèse

Mardi 14 Juin 2022 à 10h00
Salle Contensou, ONERA, 29 Avenue de la Division Leclerc,92320, Chatillôn

Plasticité sans dislocations dans les métaux à petits grains

Marc Legros, Romain Gauthier, Armin Rajabzadeh, Frédéric Mompiou et Nicolas Combe

CEMES-CNRS, Toulouse

La plupart des matériaux cristallins qui nous entourent (métaux, alliages, céramiques) sont polycristallins, constitués de « grains », séparés par des « joint de grains ». Ces frontières entre domaines d’orientation différentes déterminent certaines propriétés physiques et notamment leur comportement mécanique. On peut par exemple rendre malléable une céramique ou au contraire durcir un métal en réduisant la taille de ses cristallites à travers la fameuse loi de Hall-Petch [1,2], établie de façon phénoménologique pour les aciers il y a 70 ans. Physiquement, cette relation peut s’expliquer par l’effet d’obstacle que jouent les joints de grains sur les dislocations, qui sont les vecteurs principaux de la déformation plastique. Lorsque les grains deviennent nanométriques, le seuil de plasticité sature ou décroit, ce qui est généralement attribué à des processus plastiques portés par les joints de grains eux-mêmes, comme la rotation, le glissement intergranulaire et/ou le couplage migration/cisaillement. Des mécanismes surtout observés dans les métaux à petits grains, mais rarement quantifiés expérimentalement, hormis lors d’expériences sur bicristaux [3]. Le modèle de Cahn & Mishin (C&M) [4,5], qui a popularisé le couplage migration-cisaillement, prévoit que le facteur de couplage augmente avec la désorientation du joint. En d’autres termes, lorsqu’un joint migre, il produit d’autant plus de cisaillement que sa désorientation est forte. Les rares mesures faites sur polycristaux, expérimentalement plus complexes à réaliser, ne semble pas attester cette tendance. Et les nanocristaux métalliques ne sont pas connus pour leur déformabilité.

Pour en avoir le cœur net, nous avons, depuis une dizaine d’années étudié les mécanismes de déformation liés à la migration des joints de grain, à la fois en microscopie électronique en transmission (MET) in situ , à l’aide de simulations atomiques par dynamique moléculaire et plus récemment par microscopie à force atomique (AFM), le tout couplé avec des techniques de cartographie d’orientation cristalline. On peut ainsi suivre le mouvement de joints connus et même quantifier de façon statistique le cisaillement produit dans de l’aluminium à grains ultra fins. En l’absence de dislocation, ce couplage migration-cisaillement est le principal vecteur de la déformation plastique [6]. Ce couplage est par contre beaucoup plus faible que celui prédit par le modèle C&M, ce qui explique le faible rendement des mécanismes de plasticité par joint de grains, et donc la faible ductilité des nanocristaux métalliques.

[1]   EO Hall. The deformation and ageing of mild steel: III Discussion of results. Proceedings of the Physical Society Section B 1951;64:747–53.
[2]   NJ Petch. The cleavage strength of polycrystals: Journal of the Iron and Steel Institute, v. 174. 1953
[3]   T Gorkaya, DA Molodov, G Gottstein. Stress-driven migration of symmetrical 〈100〉 tilt grain boundaries in Al bicrystals. Acta Materialia 2009;57:5396–405.
[4]   JW Cahn, JE Taylor. A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Materialia 2004;52:4887–98.
[5]   JW Cahn, Y Mishin, A Suzuki. Coupling grain boundary motion to shear deformation. Acta Materialia 2006;54:4953–75.
[6]   R Gautier, A Rajabzadeh, M Larranaga, N Combe, F Mompiou, M Legros. Shear-coupled migration of grain boundaries: the key missing link in the mechanical behavior of small-grained metals. Comptes Rendus Physique 2021;22:1–16.

Étude in situ de la mécanique des matériaux polycristallins par la combinaison de la tomographie et de la diffraction des rayons X

Clément Ribart, Henry Proudhon

Centre des Matériaux, MINES Paristech, CNRS UMR 7633

La tomographie par contraste de diffraction reste la méthode de caractérisation de la cartographie des grains en 3D la plus rapide et permet d’approfondir la caractérisation d’emplacements de cristallographique spécifique. Couplée à des essais mécaniques in situ, que nous développons depuis quelques années au CDM, elle offre un moyen unique de sonder les mécanismes de déformation et de fracture des matériaux de structure. Des expériences corrélatives à plus haute résolution peuvent maintenant être réalisées pour obtenir une observation « zoomée » dans des grains sélectionnés. Nous passerons en revue plusieurs techniques qui peuvent être utilisées au synchrotron européen, comme la topo-tomographie à rayons X, la 3DXRD ou la microscopie à rayons X. Un exemple pour caractériser la localisation des déformations plastiques dans les métaux sera présenté. La méthode étant de plus en plus automatisée, elle permet des mesures quantitatives et statistiques dans la masse de la microstructure. Enfin, le couplage des expériences avec les calculs par éléments finis de la plasticité cristalline à l’échelle du grain sera discuté comme une clé pour découvrir les mécanismes de déformation de la microstructure.

Contact pour assister à la conférence : Mathieu.Fevre@onera.fr

Jeudi 31 Mars 2022 à 14h00

Salle Contensou, ONERA Châtillon

Journée scientifique en l’honneur de François Ducastelle

 

François Ducastelle nous a quittés l’été dernier, suscitant une infinie tristesse chez toutes celles et ceux qui avaient eu la chance de croiser son chemin. Physicien hors pair, François a profondément marqué les nombreux champs disciplinaires qu’il a abordés : la structure électronique des métaux et de leurs alliages, la physique statistique de l’ordre-désordre et des transitions de phase, les modes de croissance et les propriétés spectroscopiques des matériaux de basse dimension. 

En son honneur, le LEM organise une journée scientifique qui se tiendra le 11 juillet à l’Ecole des Mines de Paris dont il est diplômé et où il a enseigné la Physique du Solide pendant de nombreuses années. Cette journée aura pour objectif d’évoquer le parcours de François et sa contribution  à la Physique de la Matière Condensée sur près de 55 ans de recherche au travers de présentations scientifiques par des chercheurs spécialistes des différents domaines de recherche que François  a marqué de son empreinte  ainsi que différents témoignages de jeunes et moins jeunes chercheurs avec lesquels il a travaillé (et travaillait encore) tout au long de sa longue carrière.

La journée sera ainsi un équilibre entre des aspects scientifiques et mémoriels alliant science passée et actuelle, témoignages, et compagnonnage tout au long de son long parcours de chercheur.     

Liste des orateurs invités:

 

Vous pouvez trouver le programme de la journée, l’affiche ainsi que la liste des participants. Pour rejoindre l’Ecole des Mines de Paris, vous trouverez toutes les informations sur ce lien.

Pour celles et ceux qui ne pourront pas se déplacer, mais qui souhaiteraient néanmoins y participer virtuellement, une connexion zoom sera possible via le lien suivant:

 
ID de réunion : 954 4263 8028
Code secret : pZ2LiT

Le comité d’organisation: Hakim Amara (LEM), Cyrille Barreteau (CEA), Alphonse Finel (LEM), Annick Loiseau (LEM) et Guy Tréglia (CINaM).

Si vous souhaitez vous joindre à cette journée, merci de contacter Cyrille Barreteau en indiquant nom/prénom/laboratoire ainsi que votre participation ou non au buffet organisé au déjeuner.

Pour toutes les questions pratiques, merci de contacter Catherine Deutsch.

2018, web site created by HA & RG.